UNCLASSIFIED

TARGET CLASSIFICATION VIA SUPPORT VECTOR MACHINES
Robert E. Karlsen, David J. Gorsich and Grant R. Gerhart

U.S. Army Tank Automotive Research, Development and Engineering Center
Warren, M1 48397-5000

ABSTRACT

The area of automatic target classification has been a difficult problem
for many years. Many approaches involve extracting information from the
imagery through a variety of statistical filtering and sampling techniques,
resulting in a reduced dimension feature vector, which can then be input to a
learning algorithm. In this paper, we outline a method that is virtualy
independent of feature vector size and can therefore be applied to entire images,
so that the feature extraction and learning algorithm are combined into one. We
present the results of two image classification tests, both of which yielded
excellent results.

Introduction

The problem that we address in this paper isimage classification. Specificaly, we consider algorithms that
can take as input a digital image and classify it according to some criterion. Often this is a three-step process,
consisting of pre-processing, feature extraction, and decision algorithm. The pre-processing is used to remove
redundant information or to transform the image to a space where the objects are more easily classified. We have
used the multiresolution approach in previous applications, implemented through the fast wavelet transform®=. The
feature extraction step is employed to reduce the dimensionality of the problem. Examples of features include peaks
in the Fourier spectrum, statistical measures of edge densities, multiresolution energies or a histogram of gray levels.
The final step is the decision module, which takes as input the lower dimension feature vector and outputs the
classification. Often the decision algorithm is also alearning agorithm. In this case, a sufficiently large number of
sample images, with their associated classification, are presented to the algorithm. The agorithm then adjusts certain
parameters in order to satisfy a minimum error criterion.

The typical learning algorithm is a neural network (fuzzy logic systems generally have an embedded neural
network for automated learning). The reason that feature vector selection is so important for neural networks
(specifically back-propagation neural networks) is that the complexity of the network scales with the size of feature
vectors. In fact, the number of free parameters that must be determined is proportional to the size of the feature
vector and is often many times larger. This generally necessitates a large number of training samples in order to
constrain the error minimization sufficiently.

The Support Vector Machine (SVM) agorithm*® avoids many of these problems. Here, only the dot
product between feature vectors enters the problem. Therefore, the length of the feature vector has little effect on the
computational complexity of the algorithm. By design, SVM is a large margin classifier, and can give reasonable
results even for sparse training sets, where the number of samples may be less than the size of the feature vector.
SVM can also be made resistant to outliers of a given size, by adjusting a cost parameter.

The paper begins by providing a brief tutorial on Support Vector Machines and outlining derivations of
some of the important elements. We then use the SVM algorithm on two data sets, the first is a standard handwritten
digit data set’, derived from two NIST data sets, and the second is a collection of images of military vehicles. Both
of these were classified accurately with SYM. We conclude by summarizing our results and indicating the future
direction of our research.

UNCLASSIFIED

UNCLASSIFIED

Support Vector Machines

To introduce the Support Vector Machine
(SVM), we first consider a linearly separable problem;
i.e. the data can be separated completely by a
hyperplane. Figure 1 shows an example in two
dimensions, where the hyperplaneisaline. The object
is to find the best hyperplane that separates the data
into two classes, where, by ‘best we mean the
hyperplane that gives the best classification results
when new datais used.

The SVM agorithm*® is based on finding a
pair of paralel hyperplanes, which separate the data
and which have the largest perpendicular distance
between them. It is conjectured that this will provide a
good approximation to the ‘best’ separating
hyperplane. Each data point is described by a feature i
vector x and a truth vaue vy, the latter of which can Fig. 1: Linearly separable data.
take the values of +1 or —1, depending on the class. T -
The two hyperplanes are required to pass through at
least one point of each class and there can be no points between them. The boundary between the classes is then
defined to be a third paralel hyperplane that is halfway between the other two. The data points that the outer
hyperplanes pass through, which are circled in Fig. 1, are called the support vectors, the meaning of which will be
explained later. The two outer hyperplanes are described by the following expressions,

WXX +b=+1,
WXX+b=-1, 1)

with the first going through a point of class y=+1 and the second going through a point of class y=—1. The constants
w and b define the hyperplanes, with w being normal to the hyperplanes and - b/ ||w || being the perpendicular
distance from the origin to the middle hyperplane. The RHS of Eq. (1) will be greater than or equal to +1 for all
points of class y=+1 and will be less than or equal to —1 for all points of class y=—1. These can be combined into the
following constraint on all the data points,

yi (% +b)- 13 0. @

The perpendicular distance between the two outer hyperplanes is equal to 2/||w|. Therefore, finding the
hyperplanes with the largest margin reduces to finding values for w and b that minimize ||w |[, subject to the
constraint in Eq. (2).

A standard method for handling optimization problems with constraints is through the minimization of a
Lagrangian®*°. The constraints are taken into account by adding terms involving Lagrange multipliers to the
objective function. In this case, this resultsin the following primal Lagrangidf,

1. -2 9 = 2
I-P—2||W|| -a iYi(N)Q(i"'b)"'a i ®)

where ; arethe Lagrange multipliers associated with each of the constraintsin (2). Notice that at the boundary of
the constraint equation (2), the extra terms added in (3) are zero. As one moves away from the boundary, the
Lagrangian becomes smaller. Because the constraints are inequalities, bounded from below, the Lagrange
multipliers are required to be non-negative.

UNCLASSIFIED

UNCLASSIFIED

Setting the derivative of the Lagrangian in (3) with respect to w and b (the primal variables) equal to zero,
results in the following expressions,

W=é P YiXi s (49)
a v=o0, (4b)

while from the definition of the Lagrange multipliers, we obtain,
i (yi (/_\} XX, + b)- 1)= 0. (40)

Inserting Egs. (4a) and (4b) into (3), resultsin the dual Lagrangian,

N =
Qo

Lb=4 - AL EIE (5)

The problem is now reduced to finding the Lagrange
multipliers (the dual variables) that maximize Eq. (5)
and satisfy both the non-negativity constraints and
the constraints of Eq. (4b). Equation (4c) means that
only those data points which lie on the outer
hyperplanes (and hence are active constraints) will
have non-zero Lagrange multipliers. These data
points are called the support vectors and they are the
points that determine the position of the hyperplanes.
One can move the other points around the feature
space or remove them entirely and the solution will
not change, provided one does not move a point
across one of the outer hyperplanes.

The relationships in Egs. (4), together with
the constraints in Eq. (2) and the non-negativity
congtraints on the Lagrange multipliers make up what
are known as the Karush-Kuhn-Tucker®? (KKT)
conditions for this particular problem. The KKT
conditions are general rules that arise in constrained Fig. 2: Non-linearly separable data.
optimization problems, and finding solutions that
obey them generally results in an optimal solution. Since SVM is a quadratic-programming problem (the objective
function, ||w|f, is quadratic) with linear constraints, the KKT conditions are necessary and sufficient for the
resulting w, b and a to be an optimal solution. One can solve Eqg. (5) using any quadratic programming solver,
athough different solvers perform better on different types of problems®®™°. Solving the quadratic programming
problem is actually one of the most difficult parts of SVM and will not be discussed further in this paper.

Once the Lagrange multipliers are known, the solution for w is given by Eq. (4a), where the sum is over the
support vectors, since they are the only ones with non-zero . One can find b from Eq. (4c), using any of the support
vectors, although one generally averages over al the support vectors for better accuracy. Once these constants are
known, the classification of an unknown vector,v, is given by the sign of,

b+a iyix v, (6)

where the sum is over the support vectors. This determines on which side of the boundary (or middie) hyperplane
that the data point falls.

UNCLASSIFIED

UNCLASSIFIED

Now suppose that the boundary between the datais nonlinear. An example of this situation is shown in Fig.
2. One cannot separate the two classes with a straight line. The structure of the SVYM equations alows a simple
solution to this situation. Map the data, through a nonlinear transformation , to a different space, where the data can
be separated with a hyperplane. Thisresultsin the Lagrangian in (5) being transformed to,

o 1 o - —
lp=a i'_za iy (6)x(x),)
and the classification relation in Eq. (6) becomes,

b+& 1y (x)x (V). (8)

Since Egs. (7) and (8) depend only on the dot product between the two transformed feature vectors, one can employ
akernel function,

K, 9= (x)x (), ©)
and never need to computer the transformation explicitly. Equation (8) then becomes,
b+a yK(.V), (10)
with the test feature vector now inside the summation over the support vectors.
In general, the mapping will be to a higher dimensional space. For example, suppose the data is in two

dimensions and the kernel is K (x, y) = (X xy)“, then the mapping could be to three dimensions (but not to two) with
either of the transformations (among othersy,

= ¢ 0 B

(X) =g&xlx2+ or () ="F¢ 2%% +
2+ 202, 2= (11)

g X &4+

or the mapping could be to four dimensions,
&@y2 0

(x) =%,
9x1>;z: (12)
eX g

where the subscriptsin al cases refer to components of the vector x. The kernel remains the same in each case and
the resulting classification results are identical. Since oneis still solving the linear problem, just in a different space,
the computational overhead is essentially the same. The solution and parameters for the hyperplane are in the higher
dimensional space and when one transforms back to the original space the boundary becomes nonlinear. However,
thereis, in general, no way to analytically invert the solutions for w and b. Hence, one must use Eq. (10) to classify
test feature vectors.

The advantage to using the kernel approach is that the higher dimensional (or embedding) space is
essentially hidden from the user. One, in fact, never needs to know the function . It could even be of infinite
dimension. The disadvantage is that one must use Eq. (10) to classify each test vector and if there are alarge number
of support vectors, the testing phase can be somewhat slow. On the other hand, for low dimension problems, one
could work in the embedding space and compute w once, via Eq. (4a), with the support vectors also transformed to

UNCLASSIFIED

UNCLASSIFIED

S N K

the embedding space, as in Eq. (8). Then one can simply transform the test vector to the embedding space and
compute a single dot product to classify a feature vector. The problem is dimensionality. For example, with the
homogenous polynomial kernel K (X, y) = (x xy) ", the dimension of the embedding space i3,

(d+ p- 1) (13)
(d- tp!’

where d is the dimension of the feature vector. With a 10x10 image, the feature vector has 100 elements and, using a
kernel with p=2, results in the dimension being 5,050. However, with p=4, the dimension becomes 4,421,275 and so
computing the feature vector in the embedding space becomes problematic. The computation of the higher
dimensional feature vector is proportional to dP, whereas the computation of the kernel is proportional to Ngd,
where Ny is the number of support vectors. So Ng would need to be larger than d”*, in order for the kernel
approach to be more computationally intensive and this would normally only occur for p£ 2. The boundary in Fig.
2 was found with a non-homogeneous quadratic kernel.

A potential problem can occur when the data is not separable using a given kernel. An example of thisis
shown in Figs. 3 and 4, where the data cannot be separated with a linear kernel, due to an outlier. Then the
assumptions leading to Eq. (1) no longer hold. To overcome this, one can introduce positive slack variables d, which
measure how far the points, which are on the wrong side of the boundary, are from the optimal separating
hyperplanes. The constraint equation (2) then becomes,

Fig. 3: Linearly non-separable data withC=¥ . Fig. 4: Linearly non-separable data withC=10.

UNCLASSIFIED

UNCLASSIFIED

with alinear kernel. Noticethe | Digit| 0 1 2 3 Vehicle| 1 2 3 4 5
effect that the outlier had on the 0 99 01 11 01 1 990 02 27 00 02
computed boundary and that || 3 | 01 981 07 00 | 2 03 99 17 01 04
v T | 3| S5 2 M gzl 3| o7 o0 w0 o1 i
error and choose C=10, then 3 01 02 06 935 4 00 18 00 95 46
Fig. 4 results, whose separating 4 04 01 08 01 5 00 11 36 13 938
hyperplane is closer to that of | 2 02 01 02 17 | Table2: Classification table for vehicles.
Fig. 1. In this case, the effect 6 08 03 15 01

of the outlier has been 7 00 01 16 16 0Z 04 0TI 9I8 09 16
minimized, and there are fewer 8 06 08 22 11 04 18 08 00 910 09
support vectors required to 9 07 00 03 07 30 10 00 31 11 921
define the boundary. Table 1: Classification table for MNIST problem.

Results

In the past, we have used a variety of means to extract information from images, including statistical
measures from multiresolution levels, with only limited success. We had considered using the entire image as a
feature vector, instead of taking bits and pieces, but the dimensionality problem was an obstacle. The feature vector
for a 32x32 image would be 1,024 elements long and would require a massive amount of training data to train a
neural network, for example. However, the Support Vector Machine (SVM) has many nice properties that minimize
the ‘curse’ of dimensionality. After extensively modifying an SVM toolbox*3, developed in MATLAB, we tested
our algorithms on two data sets.

The first example was taken from the standard MNIST database’ of handwritten digits, 0-9, which consists
of a 60,000 image training set and a 10,000 image testing set. The database mixes two separate databases from
NIST, one using Census Bureau employees and the other using high school students. There are approximately 250
different writers in the training set, who are different from the writers in the testing set. Samples of the images are
shownin Fig. 5. Asstated previously, we simply input the entireimage into SVM as a feature vector. Because SVM
isonly abinary classifier, it is necessary to train ten separate classifiers for each digit versus al the remaining digits.
To classify an image, one runs the sample through each classifier and
chooses the one with the highest score. There are other ways to
determine the classification from the output of each classifier®, but we
chose this ‘winner take all’ method for simplicity.

vectors are superfluous to the training. Training with this reduced

set, gave us the parameters for the separating hyperplanes for each

digit. We then used the entire 10,000 sample testing set to evaluate

the classification properties of the SYM. The results of this ten class

problem are shown in Table 1, where the correct values for the digits, 0-9, are in the first row and the SVM
predictions are in the first column. The overall correct classification rate was over 93% on the testing set. Thisis
quite good considering that the feature vector had 784 elements and we only used 800 training samples. In addition,
note that the writing subjects in the testing set are different than in the training set. Other implementations of SVM
obtain close to 1% error rates, when training with the full 60,000 sample training set.

Emboldened by our success with the digit classification, we turned to vehicle classification. We obtained
(512x640) RGB digital images of five different vehicles (1 HMMWYV and 4 trucks), taken from different positions
about the front of the vehicles. To facilitate classification, we converted the images to grayscale and reduced the
resolution to (16x20). Examples of the imagery, before and after, are shown in Fig. 6 and have been resized for
display purposes. Since we had alimited number of images for each vehicle, we resorted to a jackknife approach for
training, where we randomly chose 30 out of 50 images to train with and then tested with the remainder. We ran
through 50 iterations of this and averaged the results, which are shown in Table 2. Again, the columns label the
correct vehicle and the rows label the predicted vehicle. The overall classification rate was 96%.

UNCLASSIFIED

UNCLASSIFIED

Fig. 6: Samples of vehicleimagery, original and reduced resol ution.

TOTOJ

4) V. Vapnik, The Nature of Satistical Learning Springer Verlag (1995).

5) C.J.C. Burges, ‘A tutorial on support vector machines for pattern recognition’, Data Mining and Knowledge
Discovery 2, 1 (1998).

6) B. Scholkopf, C.J.C. Burges, and A.J. Smola, eds., Advances in Kernel Methods, Support Vector Learning, MIT
Press (1999).

7) Y. Lecun et d., ‘Comparison of learning algorithms for handwritten digit recognition’, Proc. Int. Conf. Artificial
Neural Networksl 1, 53 (1995).

8) D.G. Luenberger, Linear and Nonlinear Programming Addison-Wesley (1984).
9) R. Fletcher, Practical Methods of Optimization John Wiley and Sons (1987).
10) D.P. Bertsekas, Nonlinear Programming Athena Scientific (1995).

11) W. Karush, ‘Minima of functions of several variable with inequalities as side constraints’, Master's Thesis, Dept.
of Mathematics, Univ. of Chicago (1939).

12) H.W. Kuhn and A.W. Tucker, ‘Nonlinear programming’, Proc. 2™ Berkeley Symp. On Mathematical Satistics
and Probabalistics, 481 (1951).

13) S. Gunn, ‘Support vector machines for classification and regression’, Technical Report, Image Speech and
Intelligent Systems Group, Univ. of Southampton (1998).

UNCLASSIFIED

